THE

NATIONAL
TRANSCONTINTMTAG
R ALTAI

Upper Canada Railway Society Bulletin 79-?

NATIONAL transcontinental RALLWAY

Compiled by Ron W. Layton

Box 122, Station "A", Toronto, Ontario. M5W 1A2

The National Transcontinental Railway was, in a way, the result of a bluff that the General Manager, later President, of the Grand Trunk Railway, Charles Melville Hays, was attempting to put across on the Canadian Pacific. Although he was strictly forbidden by the Grand Trunk board from entertaining any expansion plans, he nevertheless sent out survey parties and rights-of-way buyers to ostensibly buy up a route from Chicago to Winnipeg. His idea was to force the CPR to give the Grand Trunk rumning rights from North Bay to Winnipeg in exchange for rights in eastern Canada. It might have worked had the CPR not been wise to it and the board in London not heard about it and censured him. He resigned in August 1900, returning to the United States for an 18 month period.

Despite the General Manager's apparantly insubordinate action, the Chairman, Sir Charles Rivers-Wilson believed that the Grand Trunk could not ignore the west, and as a close friend of Prime Minister Laurier, he convinced the PM that a second transcontinental railway in competition with the CPR was neccessary. At that time Mackenzie and Mann's Canadian Northern was also expanding into a transcontinental line but Laurier saw the Grand Trunk as the instrument needed to build the second line. Laurier firmly believed that Mackenzie and Mann were "pushy and importunate" and that Rivers-Wilson was definately "a cut above" them.

In 1902, Hays returned to the GTR as the board had reversed its stand and was in an expansionist mood. An attermpt was made by Rivers-Wilson to come to an agreement with the Canadian Northern but Hays decided that another bluff was in order. This time the ploy consisted of a plan for a complete transcontinental railway from the GTR line at Callendar (east of North Bay), heading out across the wilderness of northern Ont-
ario about 100 miles north of the CPR, descending on Winnipeg from the north and then heading west following Sir Sandford Fleming's original survey through the mountains at Yellowhead and crossing British Colunbia to a Pacific terminal at Port Simpson, on the boundary between B.C. and Alaska.

The bluff backfired because instead of forcing Mackenzie and Mann into selling out or amalgamating with the Grand Trunk, Prime Minister Laurier saw the plan as a means of escaping from some political embarrisment. In 1900 he had been forced by some Quebec nationalist groups into offering Federal Government funds in support of a stupid enterprise called the Trans-Canada Railway. This line was to run from Roberval (187 miles north of Quebec City) for some 400 miles to the west to the foot of James Bay. The scheme was nothing more than a Quebec expansionist project and may have promted the Ontario Government into building the Temiscaming and Northern Ontario Railway as a means of blocking Quebec influence in the north. This railway would have cost millions with no hope of any return.

Laurier then jumped on the idea and tried to persuade the Grand Trumk to alter its plan and build another 400 miles from North Bay to Quebec City. After the Grand Trunk negotiations with Canadian Northern broke down, Laurier realised that he had been used as a pawn in the GTR's expansion plans and the special relationship that Rivers-Wilson had had with the PM ceased. The GTR did however agree to change its eastern terminal from North Bay to Quebec City.

Depot C of the NTR was located in Northern Quebec and was typical of the supply depots that were set up along the route of the railway during initial surveying. (Public Archives Canada / PA 39966)

The plans again went awry as a group of New Brunswickers started to agitate for an ext ension eastward to compete with the Intercolonial Railway. When the enabling Bill for the transcontinental railway was placed before the House of Commons on March 31st 1903 there was no mention of building east of Quebec City. Based on this Bill, the government was involved in the financing of the scheme as it had replaced the quebec scheme with the eastern extension to the St. Lawrence. This caused a split in the cabinet, half objected to the principle of government involvement in private industry and wanted the line built entirely by the government, afterall they would be paying for most of it antway! The other half remembering the bad example of the Intercolonial Railway, did not want anything to do with railway building.

The government had now taken the bait intended for the Canadian Northern and the Grand Trunk was in a difficult situation. RiversWilson and Hays then saw that they had no choice but to go ahead and presented a detailed offer to the government. The offer was presented to Laurier on May 26th. It estimated that the Quebec City - Winnipeg (via North Bay) section of 1350 miles would need a subsidy of $\$ 6,400.00$ a mile together with a bond guarantee of $\$ 20,000.00$ a mile. The Prairie section (793 miles) would be built under the same aid terms as the Canadian Northern. From Edmonton to the Pacific (950 miles) a subsidy of $\$ 10,000.00$ a mile was needed with an additional $\$ 25,000.00 \mathrm{a}$ mile in guarantees.

The whole affair had now split the Liberal Party, and in order to save the situation, Laurier cracked the Whip over both his party and the Grand Trunk. He presented his own proposals on May 29th. The Grand Trunk Pacific Railway would be formed which would be a

The major characters in the National Transcontinental Railway story:FRONTISPIECE - Prime Minister Laurier (Public Archives Canada / C 1971)
OPPOSITE PAGE - Charles Melville Hays, seen here at a construction site on the NTR. Hays is secend from the left in this group of officials. Hays was later to die on board the Titanic. (Public Archives Canada / C 15030)

Out in the bush, most of life went on outside. Two surveyers are shown here by the cookstove. (Ontario Archives)
wholly owned subsidiary of the Grand Trunk Railway. It would build the Eastern Division (Moncton - Winnipeg) of 2019 miles on behalf of the government and then would lease the line for operation. The route would be the straightest possible from Moncton to Quebec City to Winnipeg, staying in Canadian territory. The Grand Trunk Pacific would build the Western Division (Winnipeg to the Pacific) of 1743 miles following the GTR's suggested route. The two divisions would make up the National Transcontinental Railway. The government would be the major partner, the Grand Trunk must deposit $\$ 5$ million as surety against breach of cont ract and also must buy a minimum of $\$ 25 \mathrm{mil}$ 1ion in GTP shares. There would be no cash subsidies and the government would only
guarantee bonds of $\$ 9750.00$ a mile in the prairies and $\$ 22,500.00$ a mile in the mountains. When completed the GTR must not divert any eastbound traffic to its New England lines unless the shipper specifically requested this. Finally the eastern section was to be supervised by four government commissioners. In fact Laurier had created the same conditions that had frustrated Sandford Fleming on the construction of the Intercolonial Railway some forty years earlier.

Reaction from polititions was that there was no need for the Quebec and Maritime sections and that the whole thing was the Grand Trunk's fault.

Rivers-Wilson reluctantly agreed to the government's plan on July 24th. A week later the National Transcontinental Railway Comp any Bill was introduced in the Commons. There was considerable opposition from both the Conservatives and some Liberals. The Tories under R.L. Borden tabled an alternate
proposal that involved the extension of the Intercolonial Railway into Ontario to the Great Lakes, the Canadian Pacific would then be expropriated for 1000 miles across northern Ontario and running rights would be leased to all railways concerned. In B.C. the GTP and CNoR would share mainline and divide the territory between them. After heated debate the Act became law on September 2nd. 1903 by a margin of only four votes.

Back at the Grand Trunk shareholders meeting in London on March 8th. 1904, Rivers-Wilson and Hays succeeded in swaying those present to agree to the NTR Act. One reason that Hays and Rivers-Wilson may have had for not refusing the restraining terms of Laurier's Bill was their belief that Canadian Governments rarely mean what thay say and rarely say what they mean.

An election was due and Laurier weathered the storm, returning with an enlarged majority, so the NTR got underway. Not heeding past lessons, Laurier chose for Commissioners a discredited ex-Premier of Quebec, a banker, a manufacturer and a grain dealer. None of these men had any knowledge of railways or of construction. They did however succeed in rigging the construction contracts so that only "the right people" had the chance to bid on them. The agreed contractor for the entire NTR was the Grand Trunk Pacific but this was not to be, the Commissioners awarded only part of the work to the GTP

During the fall of 1904 and the following spring some 34 survey parties were sent out, and before the end of 1905 there were 45 parties in the field, consisting of about 18 men each, not counting a large number of men engaged in transporting supplies by canoe and packing in summer and by dog team in winter. Each party was given certain governing points to connect, and was instructed to

An early winter shot of the survey headquarters camp set up on the outskirts of Englehart, Ontario at the end of steel of the T\&NO. (Ontario Archives)

A sink hole typical of many found in Muskeg country. Some holes took years to fill. (Public Archives Canada / C 53365) most favourable line between these points. Barometric explorations and compass lines. were followed by preliminary lines run with a transit, and plans were plotted on a scale of 400 feet to the inch.

With these plans and with profiles on the same scale, projected locations were plotted in the field, and reports sent to headquarters monthly. The reports were carefully examined, necessary cahanges suggested and instructions issued accordingly. Revision of location was however never considered as finished until construction was well under way, as it was oftern found, after the line was cleared, that slight changes would effect a very considerable saving.

In general parties were sent into the field in pairs, with instructions to run respectively east and west from some more or less well defined point. In the more remote localities however, it was found impossible to fix these points at all accurately, neither could the course of the indicated route be followed closely, owing to the presence of some unsuspected large body of water or other topographical obstruction. Consequently, much difficulty was encountered in joining up the surveys of two approaching parties. Working in a country so cut up with lake and river expanses as to be more than 50% water, absolutely unmapped and unknown, and some 280 miles from the nearest railway, two parties overlapped several miles, one being ten miles north of the other before communication was established and connection made. By discharging ships rockets simultaneously on a prearranged night, quick connections were several times effected across unsurveyed gaps.

Observations of latitude were of course made, but as there was at the outset no means of intercommunication between the parties in remote localities other thatn through district headquarters, months elapsed before these could be interchanged.

Much of the early organisation had to do with transport and supply problems. Through New Brunswick, Manitoba and the settled portions of Quebec, existing roads, railways and steamship lines gave easy access to all parts of the line. La Tuque (the head of navigation on the St. Maurice River), St. Gabrie1, Maniwaki and Kipawa (terminals of CPR branch lines), and North Temiscaming, at the extreme end of the lake of that name, were the points of departure from which radiated canoe routes into the vast wilderness of Northern Quebec. Between Lakes Nipigon and Abitibi, the Moose and Albany Rivers spread their tributaries southward to within short distances of the CPR main line, furnishing water routes which were reached by canoe and portage. Lake Nipigon afforded comparitively easy access to a hundred mile stretch across its northern drainage area, while to the west Ignace, Dinorwic, Dryden and Kenora were used as shipping points.
In the fall of 1904 and the winter of 1905, from 40 to 50 completely equipped parties were placed in the field between Quebec and Winnipeg. Some of these hardly reached their destination before being overtaken by the freeze-up, and were forced to return and cut trails in order to bring up sufficient supplies to carry them through the winter.

Caches were established from time to time at intervals of 20 to 40 miles; log shacks were erected and a couple of men placed in charge of each. During the freeze-up, lasting from about the middle of October to the middle of March, and to a lesser extent throughout the break-up, extending over the greater part of April and May, insecurity of ice on river and lake practically put a stop to communication with the outside world. Throughout most of Quebec and Western Ontario, innumerable waterways, many of them rendered navigable for canoes by beavers, provided an easy method of moving camp, but across the interminable muskegs and swamps of the clay - belt, parties had in summer to depend on the tump line to pack their supplies and equipment. The most serious discomforts endured were black flies in the summer and a few intensely cold days in the winter when the mercury sometimes touched 60 below zero. Accidents due to upsetting canoes or breaking through ice were, unfortunately, too common. In the first three years of the survey, 27 lives were claimed by the frigid waters.

At the outset it was decided that the railway should conform to a high standard. Grades were not to exceed 0.4% opposed to eastbound traffic (the heavier) or 0.6% against westbound traffic. The curvature was limited to
six degrees. This limit for curves was to be used only where topographical conditions prevented easier curves being used at reasonavle cost. Grades were compensated for curvature at the rate 0.4% per degree. Pusher grades were adopted at two points only and were quite short. The whole line (with the slight exception of short approaches to the Quebec Bridge on 1% grades) was definately located with the above mentioned easy grades. However 146 miles from Moncton it was found that with the insertion of about $12 \frac{1}{2}$ miles of 1.1% grade adverse to eastbound traffic, a saving could be made of 17.2 miles in distance and nearly $\$ 2$ million in construction. At another point 286 miles from Moncton, a similar grade 10 miles long adverse to eastbound traffic was found to effect a saving of 18.8 miles in distance and about $\$ 500,000$ in construction.

Throughout the 490 or so miles from Quebec to Moncton the geographical conditions and hence the engineering problems varied greatly. The short route across New Brumswick necessitated long stretches of maximum grade and development for distance, culminating on the slopes of divide between the Mirimichi and St. John Rivers. Even with the grade of 1.1% eventually adopted here, cost of construction was very heavy. This included a tumnel and a 3918 ft . viaduct, 193 ft .

ABOVE
When embankments had to be built or where the soil was light enough spoil was hauled away or delivered by narrow gauge horse-drawn trains of side tipping cars These cars ran on the lightest possible track. A grading crew are posed here by their trains. (Ontario Archives)

The moving of heavy supplies was often easier in winter than in summer. Here a dog team is moving lumber along the frozen, snow covered grade. (Ontario Archives)

TOP
A 111 and temporary trestle can be seen in the back ground as a work crew move lumber on the light-rail construction railway. Note the crude switch in the ABOVE
A team of horses prepares to haul away skids of rock that have been blasted out of the Canadian Shield Ontario Archives)
RIGHT
In the clay belt summer construction was a messy affair. A group of graders are shown here covered in the sticky mud that their activities produced. ing in the Cochrane are (Ontario Archives)

high, over the Little Salmon River. A pusher grade was also required to negotiate the summit between the St. Lawrence and the Bay of Fundy waters. The line paralleled the St. Lawrence River, 20 miles inland, to where the substructure of the new Quebec Bridge was rapidly nearing completion. Just beyond another great viaduct, 3000 ft . 10ng and over 160 ft . high was required to span the gulch of Cap Rouge

Perhaps the most difficult problem confronting the locating engineers on the whole eastern division was that of finding a path through the forbidding Laurentian Mountains, which form the northern watershed of the St. Lawrence River. Some 80 miles west of Quebec City this range is abruptly cleft, enabling the St. Maurice River to carry south the accumulated drainage of 15,000 square miles.

Three alternative routes were proposed, and all of these routes were explored. The approved route followed up the rivers Batiscan and Brochet until the pass was reached overlooking the hanlet of La Tuque, at the head of navigation on the St. Maurice. The descent was effected by fitting a two mile horseshoe curve into a recession of the hillside.

Beyond La Tuque, the waters of the St. Maurice come down 80 miles from the old Hudson's Bay Company post at Weymontachene, dropping 700 ft . in a series of cateracts and turbul ent rapids. Four miles above La Tuque, the main river was bridged and the precipitous side hill followed to Vermillion. Here, after repeated efforts, a circuitous route through the long granite ridge was located in Coo Coo Cache, and the St. Maurice again followed to Weymontachene.

From here to the Gatineau River, the obvious route appeared to be via the Ribbon River, but a 10 mile saving in distance was effected across from its mouth to its upper basin. This involved two semi-loops and a deep summit cut and several others of slightly less magnitude. The sinuous line between the interlacing waters of the St. Maurice and Gatineau Rivers were roughly followed 50 miles beyond. Innumerable lakes separated by irregular ridges of sand and boulders covered with Jackpine constituted the outstanding feature of the topography. Similar conditions prevailed for a further distance of 25 miles to the Atik River, which was followed to its junction with the Meskigan. This region was
the least known of any on the entire line.
From the Meskigan River to Lake Nipigon occured a vast spruce-covered plain, covered in many places by from one to ten feet of muskeg. The western portion is drained by swift flowing branches of the Moose and Albany Rivers, so numerous as to require a bridge on an average of every sixth mile, not counting arch culverts up to 30 ft . span. The alignment throughout this section was exceptionally direct. For 250 miles west from Lake Abitibi, the preliminary location contained only six curves of 3 degrees and none over 3 degrees. The first reconnaissance run in 1903, was a straight line 115 miles long. On the final location some of the very long tangents were broken up, but several stretches of 16 to 18 miles were retained.

In the Laurentians and west of Lake Nipigon some tunnelling was neccessary. The first rails through were as shown here. Now this tunnel hosts CN's mainline to the west. (Ontario Archives)

To produce large fills a temporary trestle was first built and fill was tipped from the trestle until it was buiried in the fill. The trestle would eventually rot away leaving an embankment. In this case a small steam locomotive is pushing the narrow gauge skips. (Ontario Archives)

North of Lake Nipigon granite ridges alternate with flat stretches of muskeg and clay. The country is barren and desolate, much of it having been denuded of even its original growth of stunted spruce. An enormous number of bodies of water lie scattered over its surface. In the vicinity of Onamakawash Lake, along Canyon Lake and on both sides of the Winnipeg River, the rock cuts were exception ally heavy. Embankments of even larger size had also to be made. The last 50 miles into Winnipeg was through settled country. By crossing and keeping south of the CPR, the worst portion of the deep Julius muskeg, which required years to fill, was avoided.

Actual construction work began in the spring of 1906, contracts having been signed for 150 miles west from Quebec and 245 miles east from Winnipeg. The latter portion was

to be connected to a branch to Fort William (now Thunder Bay), then under construction by the Grand Trunk Pacific; thus giving a line from the wheat country to Lake Superior From time to time additional sections were let until by October 1908, the whole line was under contract. Supplies for construction of the most easterly 850 miles were distributed from various points on the Intercolonial Railway, Canadian Northern, CPR and other railways. The extreme western portion was also accessible by steamer and short winter road from various points on the CPR as far east as Dinorwic. The central portion was opened up east and west from La Tuque, the Temiscaming and Northern Ontario Railway, Lake Nipigon and the Thunder Bay branch.

Steel was 1aid into La Tuque on the Quebec and Lake St. John Railway early in 1907. About the same time the T\&NO Rly. ran its first train into McDougall's Chutes at the head of navigation on the Black River, a tributary of the Abitibi. From here, two main. transport routes were established. One extended upstream into Abitibi Lake, the other followed the Black and Abitibi Rivers to where the new line crossed the latter, beyond which a monorail tramway was const-
ucted 8 miles across country to the Frederickhouse River. The tramway was operated by a platform truck having shafts attached to a pole at right angles to the rail. The horse thus walked alongside the car and rail, the cars being guided on the rail by double-flanged wheels. A service of steamers and gasoline launches was established on each route; short streches of light-rail tramway being built around the worst rapids. Later, when the T\&NO Rly. had extended its line 40 miles to a junction with the National Transcontinental Railway (where the town of Cochrane now stands), the steel was laid east and west over the new grade, and these access routes were abandoned.

As well as being involved in the construction of the mainline, the Grand Trunk Pacific also held Contract 14 for 200 miles of branch line from Fort William to Superior Jct. The GTP also held the contract for the WinnipegSuperior Jct. section. This contract was awarded before the government realised that when it was complete the company could haul grain to the lakehead and so possibly lose interest in the rest of the project. In a high-handed action the Conmissioners took away the Winnipeg contract and put out a

The side tipping skips in action making up a fill. They are hauled by an interesting $0-4-0$ saddle tank owned by the contractors Anderson and Johnson. (Ontario Archives)
fresh tender in such a way as to leave sections vague in order to delay the line. When the Grand Trunk could no longer tolerate the delays, the new contractors put on a show by moving ten cars of grain over the unballasted roadbed from Winnipeg to Superior Jct., saying then that the route was complete, even though the Government Engineer reported that the line still needed 300,000 cubic yards of fill and 100,000 cubic yards of ballast to bring it up to specification. In August of 1909 the section of line was accepted as complete although various impediments prevented its use until April 1911. Meanwhile the branch from Fort William to Superior Jct. had been finished.

Once the main track was laid heavier equipment could be used to transport spoil. Here a construction train is crossing Valentine Creek on a temporary trestle. (Public Archives Canada/C 36480)

In the summer of 1908, a narrow gauge railway, 18 miles long, had been built around the rapids on the Nipigon River, and before navigation closed that year a considerable quantity of supplies had been deposited along the north shore of the lake by steamers built for the purpose. In the following year an attempt was made to establish a similar transport route from Jackfish over the height of land into Long Lake and thence down the Kemogami River. This failed owing to the inability to find reasonable grades up the steep ascent from Lake Superior.

It was accordingly decided that the 350 miles between Cochrane and Lake Nipigon should be built from either end. By December 1910, 40 miles at the west ens of this was graded and the track laid for over 100 miles at the Cochrane end. A winter tote road was completed across the remaining distance and sufficient supplies to grade all but a few cuts were distributed.

As most of the grading work was of the light est description, the construction plant consisted mostly of shovels and wheelbarrows, with a load or two of explosives for loosening frozen clay. This light work was practic ally completed by October 1911. In the heavy rock districts, work of course proceeded more slowly. The usual rock blasting methods were employed. Frequently 6000 cubic yards or more of rock were broken up by one of these blasts. Deep clay cuts in the Abitibi region were excavated with less expense in the winter, as in summer hoerses would travel in the sticky blue gumbo only after the cuts (and often the fills as well) had been corduroyed. In the winter the cut did not freeze deeply in a single night and the frozen top could be undermined or broken up with a few sticks of dynamite.

Much of the grading in New Brunswick and Quebec was performed with steam shovels. These were hauled to the work in winter along with their necessary complement of donkey engines, cars and track. Scrapers were employed on the prairie sections and elsewhere,

Much of the hauling on the line was done by these small 2-6-0 engines. This particular example is J.D. McArthur \& Co. Ltd. \#7. (Ontario Archives)
generally for light sandy work, few being sent in across Lake Nipigon. Slides were numerous throughout the clay belt. These occurred to some extent in the sides of cuts which frequently required a slope of 1 in 2 , or even flatter. At the Little Mistongo, a long concrete arch was built on pile foundations and the deep gully bridged with a light trestle, from which material excavated from an adjacent cut was dumped. Some of this simply flowed away in a river of mud. After several slides had occurred, which broke up and buried the culvert, sweeping three or four trestles in succession down the slope, the fill was completed in winter, a large square culvert of heavy timbers being used to replace the arch culvert. With the freshet the embankment again settled and a small lake formed on the upstream side. Continuous filling at length brought the embankment up to grade, the water being first pumped and siphoned over the top and later carried through a concrete pipe.

The treacherous soil of the clay belt was the cause of a great deal of trouble in securing stable bridge foundations especially when attempting to excavate in mis stream. When possible, long spans were used to avoid foundations in mid-stream where clay was encountered in the river bed. Trestles of unsquared timbers were erected at most openings where a bridge or culvert was required. These trestles were of the most temporary character but hey served to push the track ahead so that steel and cement could be brought in for the permanent structures.

There were about 240 steel bridges or viaducts of a total length of 11 miles, and aggregating 61,000 tons. The maximum single span was 300 feet. Steel viaducts were built with 40 ft . towers and 60 ft . intermediate spans. All bridges were designed according to Dominion Government specifications: engine loading weight - 180 tons with 49,400 lbs. on each pair of drivers.
The track was laid with 801 b . rails 33 feet long with 4 -bolt angle-bar joints. Tracklaying was sometimes carried on right through the winter, the snow being shovelled or plowed off the grade, or simply tramped down sufficiently not to impede the'Tie-buckers'". Finally snow packed about the ties was found to make a much firmer skeleton track than that laid in summer, but when this melted a

lot of repairing and shimming was required to render the line safe for material and surfacing trains.

Throughout January 1912 tracklaying was continued west of the Nagagami River at the rate of one-third mile a day, with the thermometer often 40 degrees below zero. Under favourable conditions, two miles of track a dal were oftern laid for short periods but temporary interruptions usually brought the average down to below one mile per day.

It was hoped that the whole railway would be completed in six years. Progress however on that portion to which access could be had only from either end was continually inter rupted by delay in getting out some large cut, failure of a temporary structure, deve1opment of sink holes or other unforseen causes. Uncertainty regarding the duration of the seasons had to be allowed for also. In 1907 there was 2 feet of snow on the ground in the Kenogami District on June 1st., and the ice on Lake Nipigon did not break up until June 16th.; whereas on other occasions snow had dissapeared from long stretches of tote roads running east from Cochrane and Matheson before the end of March. During the excessively dry summers of 1909 and 1910, disastrous forest fires swept over the country. These did enormous damage along the line north of the height of land, putting a stop to the work in many localities.

The following is a passage taken directly from a magazine article of 1912 which summarizes the progress in construction that had been made up to the time of its publication: The undertaking has now progressed to a point where it is reasonably certain trains will be running across the whole eastern division sometime in 1914. The track is already laid 355 miles eastward from Winnipeg and 750 miles westward from Moncton, except for a short distance in southern Quebec and the as yet unbridged St. Lawrence River. Another stretch of track extends east and west from Cochrane covering 330 miles. This leaves a gap of 150 miles in northern Quebec and another 240 miles in northern Ontario. Across the former, except for the most easterly 10 miles no grading has been done. Throughout the latter, only a small amount of excavating and some temporary trestles remain to be completed, on which work is being rushed, so as not to delay the tracklaying gangs working from either end. These are expected to meet not later than the end of the present year, giving through connection by way of the T\&NO Railway between the cities of eastern Canada and the wheat fields of the west. Across New Brunswick, east and west from Quebec City, for about 100 miles out of Cochrane and between Winnipeg and Superior Junction, surfacing and ballasting are finished, steel bridges are in place and the line practically ready for operation. Division yards are located on an average of 120 miles apart. Sidings are provided about seven miles apart, with a water tank at every third siding.

The originally estimated distance of 1900 miles from Moncton to Winnipeg was reduced gradually by repeated revisions of location to 1804.8 miles. This distance is 261 miles less than the shortest distance over any other combined railways between Winnipeg and Moncton then in existance. The distance between Winnipeg and Quebec City was 1351 miles, which is 223 miles shorter than the CPR and the grades were so much more favourable that it was calculated that engines of equal capacity would haul nearly twice the load on the new line.

On November 17th. 1913 stell was complete from Winnipeg to Moncton, the last spike

BUILDING THE BRIDGES

ABove
Where large rivers required the building of steel and concrete bridges inue whilst the main structure of so that construction could conture a train is negotiating one of the bridge was built. In this picture a train is negotiating one of these shooflys whilst work is in ure. (Ontario Archives) LEFT
When crossing the Coffee River a temporary trestle was built which was later replaced with a more permanent structure. Later still these "permanent" trestles were replaced with earth fills still short steel bridges or culverts. (Ontario Archives)
BELOW
The Winnipeg River bridge in the final stages of construction. The main box girder has been rolled out over the old trestruction. The Now a steam crane is working on trestle so that a girder ang on removing another section of the wood be moved sideways into position. (Ont (seen behind the trestle) can be moved sideways into position. (Ontario Archives)

LEFT

A steel box girder bridge "as built". This particular bridge is located to the east of Cochrane and is still in use. The water tower in the background however has given way to diesel traction. (Ontario Archives BELOW
Where the final bridge work was to be of wood, these trestles were built quickly and in advance of the tracklayers. In this shot the completed bridgework is awaiting the final grading and track laying (Ontario Archives)
thex
M1:

BELOW
A completed section of bridge and fill work crossing the Lowbush and Circle rivers. Lowbush River station is visible through the first bridge and has remained virtually unchanged since this photograph was taken on October lst. 1912. The more recent photograph can be seen on page 22 (Ontario Archives)

ABOVE
When the tracklaying machine and its attendant train had passed, the spiking gang moved in to finish the job. Later still ballasting crews ould finish aligning and levelling the track. (Ontario Archives)
LEFT
Introducing the Hicks Rail Layer. A crude hand phe rails device. Ties were manhandled forward and the rails were manouvered by the booms on the machine. Note how at first the track is only laid on the dirt grade and no attempt is made to BEI it. (Ontario Archives)
BELOW
A more sofisticated track-laying machine at work near Armstrong. With this device, ties are brought steam powered crane. (Ond rails are handled by a

LAYING THE TRACK

was driven at Grant, Ontario
A11 that remained was the bridging of the St. Lawrence at Quebec City. Some statistics of the constr uction are listed below:

Rock removal Excavation Fill
Track ballast Concrete masonry Rails
Bridging steel Ties

37,394,000 cu. yards. $20,568,100 \mathrm{cu}$. yards 32,633,500 cu. yards. 6,229,200 cu. yards. 691,000 cu. yards 252,000 tons. 61,000 tons. 5,400,000

In 1898 the Railway Committe of the Privy Council had authorised the construction of a cantilever bridge across the St. Lawrence River five miles upstream of Quebec City bet ween the villages of Ste. Foy and Charny. A company was formed to build the bridge and hired an American consultant named Theodore Cooper. Cooper believed that previous examples of cantilever bridge construction, notably the Forth Bridge in Scotland, used far too much stee1. He recommended a bridge that would be double tracked, one track for railway use , the other for streetcars. The centre span would be 1800 feet in length and the whole design would be 60% lighter than the Forth Bridge. An order was placed in 1904 with a Pennsylvania company that had never built a bridge like this before, this choice and the overall design led to the Chief Government Engineer asking for the plans to be re-examined. Cooper, who was offering his services free of charge, and the bridge company ignored the suggestions and construction began.

By August 1907, construction was well advanced but the on-site staff and Coughmawaga Indian construction workers were far from happy about the structure of the central span. On August 27 th., Cooper refused an appeal from the site engineer to suspend operations, then on August 29th. a locomotive, a travelling crane and a load of steel were on the edge of the span when it collapsed, killing seventy-four workers.

A souvenir reprint of the first passenger train to operate over the N.T.R. east of Quebec City. (J. Norman Lowe Coll.)

After this the government too kover the project and a new bridge was designed, almost twice the weight of the original structure and for the first time nickel-steel was specified. Work began early in 1910 and continued for seven months a year for the next six years. By May 1916 the approaches were complete and only the centre span needed to be installed. This span which would link the cantilever arms was 640 feet in length and weighed 4,701 tons. It had been assembled on shore and towed into position on pontoons. It would then be jacked up into posit ion. On September 11th. the hoisting began. When the structure was 30 feet above the water a casting in one of the hoisting frames split, dropping the south-west corner and the whole span dropped into the river. The vibrations in the structure shook the construction workers from the bridge into the river, most were rescued but two men died.

Another span was ordered, which was hoisted into position on September 17th. 1917 without incident. Four weeks later the first train crossed and the National Transcontinental Railway was complete at a cost of $\$ 169,090,125$.

After the election of 1911, at which time the Conservatives under R.L. Borden came into power, there was a profound alteration in attitude toward the National Transcontin ental Railway. The Laurier administration which through its four man commission had nurtured the project from its beginnings, had pursued a policy of high standards of construction. The new attitude was one of suspicion of excessive expenditure of public monies in unduly heavy construction, improper awarding of contracts and other dubious procedures, so on January 29th. 1912, by order of the Privy Council, a two man investigating commission was set up to review the

entire handling of the project up to that time. The chairman of this commission was George Lynch-Staunton with F.P. Gutelius as member. A further change came that year when Major R.W. Leonard was appointed Conmissioner for the NTR and legislation passed reducing the commission from four members to one. The Investigating Cormission stated in its report that :-
Until the appointment of Major Leonard, no member of the N.T.R. Commission had any experience or knowledge of railway building or operation.
This comment paraphrased the general spirit in which the Investigating Conmission was set up and carried out its duties. The voluminous 659 page report of the Commissioners was finally presented to the government in February 1914, with the conclusion consisting only of two sentences :-
We find that the Transcontinental Railway Commission, the Grand Trunk Pacific Railway, and those having charge of the construction of the railway did not consider it desirable or necessary to practice or encourage economy in the construction of this road.
We find that without including the money that was unnecessarily expended in building the railway east of the St. Lawrence River, $\$ 40$ million at least was needlessly expended in the building of this road.

With a financial outlay of nearly $\$ 170 \mathrm{mill}$ ion, which was more that twice the original estimate on which the Grand Trunk Pacific had agreed to enter the scheme, the new figure that the 3% per annum of cost rent would represent was too high. Even with the first seven years at no cost, the line could (Continued on Page 19)

Along with other Canadian Railways the N.T.R. had to do its share of snowplow duties Here two plows are operating to the west of Cochrane. (Ontario Archives)

The route of the National Transcontinental modern Canadian National System.

QUEBEC BRIDGE

The last span is hoisted into place. This third attempt to bridge the St. Lawrence at Quebec City succeeded. (Canadian National photo) BELOW
A local train crossing the bridge in steam days. Since this photograph was taken one of the tracks has been removed and the roadway has been widened to take up the space. (CNR)

ABOVE - When the N.T.R. was finally finished the first transcontinental trains using the route would have included equipment such as this Parlor-Cafe car $\# 3900$. (CNR)
not have been expected to generate sufficient traffic to pay its rental. The Grand Trunk Pacific therefore declined to operate the line, citing that after the change of govern ment in 1911, the new Commission had not completed the line to the prescribed standards.

The government, upon realizing that the NTR would be on its hand permanently, designated it as part of the Canadian Government Railways, to be under the juristiction of the Minister of Railways and Canals. The Lake Superior branch of the Grand Trunk Pacific was leased for 999 years on May 1st. 1915 to give the government full control of the Winnipeg - Fort William route. The operation al arrangement set up in 1914 continued until November 20th. 1918 when the Canadian Government Railways was placed under the Board of Directors of the Canadian Northern Railway, which was by this time working for the federal government, which had recently declined further loans and purchased the latter railway. This temporary arrangement led to the birth of one of Canada's premier passenger trains. The "Continental Limited" first ran in 1918 as a joint CNoR/GTP operation. Running to North Bay from Montreal on Canadian Northern tracks and from Toronto on Grand Trunk tracks, the train combined (and split eastbound) and ran north to Cochrane on the T\&NO Railway before heading west on the eastern division of the'NTR which by now had become known as the NTR. After Winnipeg the train followed GTP rails to Edmonton and then the (government inforced) joint CNoR/GTP tracks to Redpass Jct., B.C. before heading south to Vancouver on Canadian Northern right of way.

The essentially temporary "marriage" of the two companies under one board gave way in 1919, when the Canadian National Railway Company was constituted to manage and operate all government owned lines under the operational name of Canadian National Rail ways.

In the ensuing years, Canadian National built branches from the old NTR to such places as Noranda/Rouyn, Chibougamau and Bruce Lake in order to tap the mining and timber recourses of these areas.

The intention of the Laurier Government was for a route that would ship grain and other prairie products directly to the ports of Quebec and Halifax by the shortest and easi est route possible. This has not been the
overnight connection with the ONR/VIA pool train to Kapuskasing. From Kapuskasing to Hearst there is a gap in passenger service which is filled by ONR buses operating on parallel Highway \#11. A Hearst a thrice weekly mixed train operates to Nakina where one can head to Winnipeg on the "Super Continental" (VIA \#3 \& \#4).

As with train service, the track conditions vary with traffic demands. The eastern section was one of the first in Canada to be equipped with a full CTC system. West of Quebec City the train order prevails with good track conditiond all the way to Senneterre. From Senneterre the lowering traffic levels are reflected as the weeds encroach on the track until Cochrane is reached where, after connecting with ONR, the old NTR mainline is well maintained as far as Kapuskasing. There is 0.2 miles between Cochrane and Cochrane Junction, where CN does not have full control of the main line. On this joint section the ONR timetable prevails.

Over the gap in the passenger system, the speed limits are lowered and locomotive weight is restricted. By far the most restrictive section lies to the west of here between Hearst and Nakina. The usually allowed power is 1200 HP road switchers with a slow speed restriction. During the spring and early summer, the muskeg conditions dictate the light ening of maximum car weights by 25 tons.

At Nakina the old NTR route is joined by the Longlac (originally Long Lake) cutoff which was built by the CNR in the early 1930's to connect the NTR with the Canadian Northern, providing a more direct route from Toronto and Montreal to Winnipeg. From Nakina to Winnipeg the main line is a total contrast from the section east of that junction. The line is fully CTC operated with heavy rail and sees intensive freight operation interlaced with daily passenger ('Super Continental") and twice weekly mixed (\#277/ \#278 - Superior Junction to Sioux Lookout and \#286/\#287 - Sioux Lookout to Winnipeg) trains

Between Sioux Lookout and the Manitoba border there has recently been a lot of track rebuilding activity, curves have been straightened, double track has been installed, for many miles complete with ribbon rail and in places concrete ties. All this is fully CTC operated.

Was the NTR worth the money and effort? Overall the answer is yes. The original mainline has opened up the north of Ontario and Quebec and allowed exploitation of the irm-

ense timber and mineral resources of the area. The rout from Nakina to Winnipeg would probably have been built by the CNR sooner or later as the old Canadian Northern route is very round-about, meandering through Thunder Bay and Rainy River. The sections in northern Quebec might have been built as extensions of the ONR at a later date and in the east as extensions of the old CNoR Chicoutami branch. It is unlikely that the sections between Kapuskasing and Nakina and Senneterre and Cochrane would have been built by any other scheme. As was noted by the Borden government, there was really no need for the Quebec City to Moncton section as double tracking of the Intercolonial Rail way wouls have accomodated the traffic.

As a postscript, the two main players in the early NTR and GTP days, Sir Charles RiversWilson and Charles Melville Hays were immortalized in ex-Grand Trunk Pacific stations:Rivers, Manitoba and Melville, Saskatchewan.

Information of the construction was taken from U.C.R.S. Bulliten \#47 which was published by the Society in 1957. Other information was found in 'History of Canadian National Railways" by G.R. Stevens, "Railways of Canada" by Nick \& Helma. Mika and by conversations with various railfans and personal observations The Compiler would like to thank the staffs of the Ontario Archives, the Public Archives in Ottawa and Canadian National Railways photo section in Montreal. Special thanks to Mr. Rex Rundle for allowing us to use the grade profiles and elevation information that he has carefully preserved from period Government publications.

Canaman natiman

ABOVE - When Canadian National became established local service over the old National Transcontinental route was provided by Pacific type locomotives. In this shot a local passenger train threads the Laurentians. (CNR)

LEFT - CNR class K-3-a Pacific \#5576 recieves a lube job during a station stop at La Tuque, Quebec. Built as GTR \#240 by MLW in 1913 she lasted on the roster until August 1962. (CNR photo)

ABOVE - Between Cochrane and Senneterre, the local passenger train is reduced to one unit, one baggage car and one coach. \#6532 (FP-9) leads the eastbound passenger train. (R.W. Layton)

The western end of the NTR still has transcontinental service. CNR \#1 (now VIA \#3) is seen here picking up passengers at Minaki in north-western Ontario. (CNR)
BELOW CENTRE - Power is changed at Winnipeg Union Stn. Having brought the train from Montreal $\# 6528$ backs away from the station.

ABOVE - Road limits result in the use of geeps on freight service in north-eastern Ontario. Here \$4457 heads west through Cochrane station. (R.W. Layton)
BELOW - New double track route under construction in the north-west of Ontario.(R.W.L)

ABOVE - Heavy freight haulage in NW Ontario is handled largely by these new GP-40-2W units. \#9527 is seen here. (R.W. Layton) BELOW - One track of a new grade has been opened whilst the second track is almost up to running standard. (R.W. Layton)

ABOVE CENTRE - The new grade has just been opened and the rails removed from the old grade as another section of double track route nears completion. (R.W. Layton)
BELOW - Geep 4458 lifts a train of pulpwood empties out of Taschereau Yard in northern Quebec. (R.W. Layton)

BELOW - Ihird largest in numbers behind the GP-40's and SD-40's in Northwestern Ontario are the GP-38-2W's. \#5599 and 5569 are shown here in Transcona Yard. (R.W. Layton)

LEFT - Sioux Lookout, the first division point east of Winnipeg. It has a pseudo Tudor finish. (CNR) BELOW LEFT - Hearst, as built. This photo was taken in the very early days when service had just started (Ontario Archives)
BELOW - Winnipeg Union station was built to serve both the Grand Trunk Pacific (NTR) and the Canadian Northern. The photograph shows the building shortly after opening. (CNR)

STATIONS

ABOVE - Macamic, Quebec is typical of the small community station in the east end of the clay-belt. It comes to life twice a day when the passenger trains arrive and then reverts to being a railway office. (M.F. Layton)

ABOVE - Cochrane Union station is one of the more substantially built on the line, being entirely of brick. Shortly after construction it served as a shelter to the townspeople as Cochrane burnt down in one of those early disasterous fires
(J. Walther)

ABOVE - Lowbush River station has changed very little since it was built over 65 years ago. It consists of a small shelter and platform and has remained adequate for the community that it serves, where rail is the only access. (M.F. Layton) LEFT - The staff of Transcona
station pose for the camera. This was the first station east of Winnipeg and is now on the site of CN^{\prime} s Prairie shops. Since this photo was taken the City of Winnipeg has expanded to take in this community. (CNR)

Appendix 1 PASSENGER SERVICE

HEARST - NAKINA

STE-FOY / OUÉBEC - MONTRÉAL SENNETERRE - (COCHRANE)

(STE-FOY /QUÉBEC - MONTRÉAL)
SENNETERRE - COCHRANE

	Chrane		
	$\begin{gathered} 175 \\ \text { Ex. Sun. } \\ \text { saut dim. } \end{gathered}$		$\substack{174 \\ \text { Exk sun. } \\ \text { Sout dim. }}$
619 688 385	${ }_{\text {()1305 }}^{1245}$		1925
${ }_{648}^{689} 9$	${ }_{(0) 135}^{1324}$	Sole	${ }_{1846}^{1905}$
${ }_{689}^{6788}$		Landrienne	${ }_{(010818}^{1817}$
${ }_{7}^{988}$	(1) 143		(1739
${ }_{735}^{722} 4$	${ }_{6}^{(11442}$	couny	${ }^{(11728}$
${ }_{779}^{778}$	©(1)11	Authier	(11659
${ }_{776} 782$	${ }_{\substack{1523 \\ 150}}^{\substack{15 \\ 10}}$	Mosamic	16.48 1630
${ }_{788}^{7888}$	$\underbrace{\substack{152\\}}_{\text {©0.1606 }}$		${ }_{\text {(0)1606 }}^{1618}$
	๑1636	${ }_{\substack{\text { Eades, } \\ \text { Mose }}}^{\text {Ont. }}$	
cose	(8)	Lowbust Rier	
退	(1)36	Stimen	(1)14 ${ }^{(125}$
(e)	${ }_{18} 8$		

WINNIPEG - SIOUX LOOKOUT

TORONTO - NORTH BAY - COCHRANE - KAPUSKASING - HEARST Nos. $127-122$ LLES TRAINS OE LON EAAED ON CN LINES BETWEN TORONTO AND NOATH BA

Appendix 2

THE N.T.R. NOW - MILE BY MILE

EQUIPMENT RESTRICTIONS

Heaviest engine permitted to operate GF-30c class. (Connors spur MR-18e. f and g class)
Heaviest car permitted gross weight $263,000 \mathrm{lbs}$.
(Connors spur 220,000 lbs).
Heaviest auxiliary permitted -250 tons.
Heaviest auxiliary permitted - 250 tons.
Heaviest auxiliary
permitted
Heavie
tons.
Connors Spur - Movement of loaded chip cars
not permitted.

- rain speeds at any point.

Mileage	$\begin{gathered} \text { Miles per hour } \\ \text { Railiner }{ }^{*} \text { Psgr. }{ }^{*} \text { Freight DU } \end{gathered}$			
$0 . \overline{0}$ to 2.8 z... zone	55	50		
2.8 to 13.4 zone	60	55	50	
10.9 to 11.4		50	45	
4 to 57.0 zone		50	45	40
15.6 to 15.9	50	45	35	35
29.4 to 34.7		40	35	研
41.0 to 46.2		40	35	30
54.4 to 56.9		40	35	30
7.0 to 67.9 zone		50	40	
57.8 to 58.7	45	45	40	
61.6 to 63.0	25	25	25	25
62.9 Until Crossing				
occupied		25	25	
67.9 to 86.9 zone		45	45	
Connors Spur			15	
EXPRESS TRAINS: Unless otherwise restricted, trains designated as express trains by timetable schedule or as express extras by clearance may run speeds. They must not exceed 65 mph or passenger train speeds at any point.				
- ALL TRAINS having a consist are subject to the	DES the a colu			

139.4 to 141.0	55 55	50 50	40 40	40
147.3 to 159.5 zone	65	60	40 50	
153.1 to 153.5	55	50	45	40
159.1 to 159.5	50	45	35	35
159.5 to 177.0 zone.	55	50	40	
163.0 to 163.5	50	45	35	35
167.9 to 172.5	50	45	35	30
172.5 to 173.7	25	20	20	
173.7 to 176.7	50	45	35	35
177.0 to 187.2 zone .	60	55	45	
180.6 to 181.0	55	50	40	40
186.3 to 187.2	55	55	45	
187.2 to 212.1 zone.	65	60	55	
192.7 to 192.9	65	60	40	40
204.8 to 205.9	60	55	40	
212.1 to 219.4 zone	65	60	50	
213.3 to 213.6	60	55	45	
217.5 to 217.8	55	50	35	-
219.3 Until crossing				
Slane Spur ocupied.....	$\stackrel{-}{-}$	$\stackrel{5}{-}$	10	

Heaviest engine permitted to operate GF-30c, class. Heaviest engine permitted in north siding track

 $\mathrm{G}-94$ Pacific Jct. is MR-18.Heaviest car permitted gross weight $263,000 \mathrm{lbs}$. Heaviest auxiliary permitted - 250 tons.
Due to sharp curvature when turning locomotives in
Wye at Napadogan, units must be turned individualWye at Napadogan, units must be turned individual-
ly, not coupled together to prevent draw bar or track damage.

speeds				
Mileage	Railiner	$\begin{gathered} \text { Miles pes } \\ \hline \text { Psgr. } \end{gathered}$	hour *Freight	DU
0.0 to 89.9 zone	75	70	55	
18.2 to 19.8	55	50	40	
34.4 to 34.9	65	60	50	
43.2 to 44.0	65	65	55	
45.3 to 46.3	40	35	25	-
46.5 to 50.3	60	55	45	
51.0 to 51.8	70	70	55	-
54.1 to 54.9	60	60	55	
56.4 to 58.4	60	55	45	
75.3 to 75.7	65	60	50	
84.5 to 85.4	70	70	55	
89.9 to 110.4 zone	65			
93.0 to 95.0 ...	60	55	40	40
103.1 to 110.0	60	55	40	40
110.4 to 130.9 zone	65	60	55	
118.7 to 119.2	55	50	40	35
127.1 to 130.9	55	50	40	40
130.9 to 147.3 zone.	65	60	40	

EXPRESS TRAINS: Unless otherwise restricted, trains designated as express trains by timetable schedule or as express extras by clearance may run five (5) miles per hour in excess of freight
train speeds They must not exceed 65 mph or passenger train speeds at any point.
ALL TRAINS having a DESIGNATED UNIT in the consist are subject to the additional speed restrictions listed in the DU column.

Heaviest engine permitted to operate GF-30c class. Heaviest car permitted gross weight $263,000 \mathrm{lbs}$. Heaviest auxiliary permitted - 250 tons.

Due to sharp curvature, when turning locomotives in wye at Monk, units must be turned individually,
not coupled together, to prevent draw bar or track damage.

SPEEDS				
Mileage	Miles per hour Railiner *Psgr. *Freight DU			
67.6 to 85.7 zone		50	40	30
68.2 to 73.4		40	35	
85.3 to 85.7	35	35	30	
85.7 to 101.6 zone		30	30	
101.6 to 159.7 zone	45	30	30	30
123.46 within 1500 feet of highway crossing until crossing oc-				
pied (Eastward trains)	40			
159.7 to 224.7 zone	50	35	35	30
165.0 to 166.8	35	30	25	
181.1 to 187.6		35	35	
224.7 Over Junction				
\& cross-over switches				
at Diamond	15	15	15	
EXPRESS TRAINS: Unless otherwise restricted, trains designated as express trains by timetable schedule or as express extras by clearance may run five (5) miles per hour in excess of freight train speeds. They must not exceed 65 mph or passenger train speeds at any point.				
*ALL TRAINS having a DESIGNATED UNIT in the consist are subject to the additional speed restrictions listed in the DU column.				

Rules 41 and 44 applicable between St. Charles and Diamond.

EQUIPMENT RESTRICTIONS
Heaviest auxiliary permitted, 160 tons.
No engine permitted to operate on Smith Peat Moss Company side track, mileage 2.8 , account located in muskeg area.
Heaviest car permitted, gross weight $263,000 \mathrm{lbs}$.

EQUIPMENT RESTRIGTIONS
Heaviest auxiliary permitted, 160 tons.
Heaviest car permitted, gross weight $263,000 \mathrm{lbs}$.

EQUIPMENT RESTRICTIONS
Heaviest auxiliary permitted, 160 tons. Heaviest car permitted, gross weight 263,000 lbs.

EQUIPMENT RESTRIGTIONS

Heaviest auxiliary permitted, 160 tons.
Account curvature, units in series 5000,5100 and 5200 , when coupled to other units, are prohibited on wye track at Parent, also on tracks A-46 and A-47 at Senneterre.
Heaviest car permitted, gross weight 263,000 lbs.

min

Appendix 4 ELEVATIONS - MONCTON to WINNIPEG

$\underset{\substack{\text { Milcs from } \\ \text { ifoncton }}}{ }$	National transcontinental railway	Elevation above mean sea level
0.0	Moncton, junction with Intercolonial rail	50.0
5.9	Lutesville station.	${ }^{213.0}$
${ }^{14.4}$	Segawa station	${ }_{249} 27$
21.5 23.3	Canaan river, high water, 162; low water, 156; bed, 154; rail.....	${ }_{250}^{240}$
33.5	Alward station...	340.4
39.0	Summit between	351
39.9	Pangburn station	342.8
49.8	Bronson station	181.9
${ }_{56.7}^{56.6}$	Chipman station.	${ }_{61}{ }^{\text {co }}$
56.5	Salmon river, high Cantor station.	${ }_{383.2}^{68}$
67.1	Newcastle viaduct	334
73.4	Sunbury station.	497.
79.1 80.5	Summit between Salmon and Miramichi ri	
80.5 81.6	Bantalor station	459.9
88.3	North Cain stat	531
96.3	McGivney, junction with Intercolonial Ry., Fredericton branc	$571 \cdot 7$
108.4	Maple Grove station.	$821 \cdot 7$
117.0	Summit between Miramichi and Nashwaak	
117.4 117	Napadogan lake, high water, 895: low wate	${ }_{899.2}^{890}$
124.5	Napadogan station South branch Miramichi river, high water, 785 ; low water, 778 ; bed, 776; rail	899.2 797
125.4	Riverdale station.	796.5
$132 \cdot 8$	North branch Miramichi river, high water, 822 ; low water, si7; bed, 812; rail	
133.3	Juniper station...	${ }^{837} .2$
145.9	Juniper brok, rail. ${ }^{\text {Jummit }}$ station (summit between Miramichiand Tobique rivers)	- 1
149.2	Odell stream, high water, 1,053; low water, 1,048; rail...........	1,057
153.0	Baker lake, high water, 659; low water.......................	657
159.2	Longley station	528.8
$162 \cdot 4$	Canadian Pacific railway, Tobique branch, crossing, C.P.Ry., rail, 384; N.T. Ry., rail.	00
163.4	Wapske station \ldots.......................................	453
164.8	Tobique river, high water, 376; low water, 364; bed, 358; rail	461
${ }_{177.0}^{165.4}$		${ }_{738}^{460}$
$177 \cdot 1$	Dead Brook lake, high water, 732 ; low water	730
$180 \cdot 3$	Graham Brook viaduct, rail.	690
181.4	Caton brook,	
181.5	Peterson station.	660
183.9	Little Salmon river,	627
${ }_{1}^{181.5}$	Drummond station	630
193.7	Grand Falls sta	574.9
197.1	Four-mile brook, high water, 449; low water, 448 ; rail	523
$200 \cdot 3$	Bellefleur station	479
$202 \cdot \frac{4}{3}$	Canadian Paciific railway	460
$207 \cdot 1$	Grand river, high water, 437 ; ${ }_{\text {low }}$ water, 425 ; bed, $42 i$; rail	${ }_{444}$
209.6	Sigas river, high water, 437 ; low water, 422 ; rail...	454
209.7	ation	454
213.5	Quisibis river, high water, 443; low water, 420; bed, 416; rail.	450
214.3	Quisibis station	455
219.6	Green river, high wat	4 7
225.5	Green River station	470 470
$226 \cdot 4$	Iroquois river, high water, 458; low water, 437 ; bed, 433 ;	析
229.9	Madawaska river, bigh water, 465 ; low water, 440; bed, 435; rail	473
237.6	Edmumaston statio	472.3
242.5	Temiscouata Ry. crossing	524
242.9	Baker Brook station	516.4
243.3	Baker brook, rail	515
252.0	Caron Brook statio	603
258.1	Kitchen brook, hish water, 672 ; low water, 668 ; bed, 666 ; rail. ${ }^{\text {a }}$...	681.5
${ }_{259}^{259}$	Courchesne station.	736
260.4	Sum	36
264.8	Long lake, high	670
271.9	Glendyne station	${ }_{712}$
274.9	Tarte station	681
276.9	Blue river, high water, 600 ; low water, 592 ; bed, 587 ; rail.	650
282.8	Nigger brook, high water, 696; low water, 692; bed, 690; rail	709
286.1	Estcourt station..	9
286.3 286	Lake Pohenegamook, high water, 685 ; low water, 677 ; rail......	10
293.1	Rivière Boucanée, high water, 952 ; low water, 947 ; rail..........	1,074
297.2	Summit...............................	
298.9	Pelletier station.	1,259.0
$\begin{aligned} & 300 \cdot 5 \\ & 305 \cdot 4 \end{aligned}$	Riviere Rocheuse, high water, 1,223 ; low water, 1,220 ; bed, 1,218 ;rail	1,236
	Riviere Fourchue, high water, 1,183 ; low water, 1,180 ; bed, 1,178 ; rail.	
305.9	Picard station.	${ }_{1}^{1,207}$
312.4	Lapointe station	1,140
317.9	Lippee station.	+1,106
322.4 326.4	Lacaux Loutres, high water, 1,133; low water	1,126
333.4	Holliday station.	1,111
341.9	Le Febvre station	1,202
351.9	Deniau station.	1,092
355.4	Monk station	1,162
362.7	Terrien river, high water, 1,241 ; low water	1,252
364.0	Lake Terrien, high water, 1,259; low water,	1,263
364.4	Cardaillac station	1,265
369.7	Bras d'Apic river (east), high water, 1,182 ; low water, 1,179 ; bed, 1,177; rail	1,208
3770.4	Bras-d'Apic station.	1,215
370.8		
	Duguesclin station	1,232
375.7	Méchant-pouce river, high water, 1,189; low water, 1,185; bed, 1,183 ; rail	1,226
376.2 380.4	Fortin creek, high water, 1,206 ; low water, 1,203 ; bed, 1,202 ; rail Langelier station	1,220 1,316
381.8	St. Nicholas river, water, 1,$296 ;$	
382.9	Summit	1,310
${ }^{386} \mathbf{4}$	Rosaire	1,214
$392 \cdot 4$		1,114

Miles from Moncton	National transcontinental railway	Elevation above mean sea level	Miles from	m national transcontinental railway	Elevation above mean sea level
$35 \cdot 5$	East Ceche creak, high water, 1,337; low water, 1,332 ; ra	1,359			
${ }_{7}^{73959}$		1,347	${ }^{1,028.1}$	Cochrane, junction with Timiskaming and Northera Ontario Ry\%. Frederick House river, high water, 700 ; low water, 786; rail	819
	raí	1,357	${ }^{1,034 \cdot 6} 1$	Frederick station.	${ }_{861}$
	Havack iake, water Havauis creek, high	1,349	1,038.6	Buskeron station..................... $83 .$. ail	883
化•3	Bourasis station.......................	1,376 1,389	1,0+1.1	Summit..............................	${ }_{926}$
[17.3	Duchare like, high water, 1,376; low water.	1,374	$1,045 \cdot 5$ $1,0+8.4$	Driftwood station,	s93
749.8	Lake, \%ht mater, 1,391 l low mater............................	1,388	1,054-6	Pullen station..........................	849 860
T50.8		1,415	1,059.8	Mattagami river, high water, 741; low water, 730 ; rail	771
-51.0		1,405	$1,061.7$	Tudhope station.	769
湤.6	Coquar station...............	1,408 1,478	1,066.6	Poplar Rapids river, high water, 741 ; low water, $23 i$; rail	767
255.1	Sumaite	1,486	${ }_{1}^{1,074-5}$	Strickland station,	797
\% 56.1	Lake, hik mater, 1,499; low water	1,478	1,0778	Fauquier station.............	758 746
$755-1$	Summit, beight-ot-land between St. Lawrence and Hudson bay ..	1,493	1,078.5	Ground-hog river, hifl water, 714; lov water, 69	742
760.3	Lake bith water, 1 , 482; low water..........................	1,480	1,083.0	Mrarten creek, high water, 762 ; low water, 757 ;	748
661.9	Octavic onees, hish water, 1,410 ; low water, $1,40 \%$; rail	1,469 1,457	1,084.3	Moonbeam station	794
762.3	Monet ststion...\|	1,454	$11,091.8$	${ }_{\text {Kitigan }}$ sta	780
\% 163.6	Kidney like, high water.	1,447	1,098.2	Bass river, ilig water, ${ }^{\text {a }}$, 38 ; low water, 73 ; rail	752
		1,418	1,098.5	MacPherson station.......................	${ }_{714}$
$766 \cdot 8$	Hudsm Ray creek, high water, 1,376 ; low water, 1,372 ; bed, 1,369 ;	1,431	${ }^{1,104.0}$	Secord station-	764
768.2	Lake, his	1,401	1,110.9	Harty station.	${ }_{7}^{735}$
769.5	Beaver lake, high water, 1,43; low	1,401	1,112.9	Solomon creek, high water, 749 ; rail.	764
20.8	Itumbaso lake, high water, 1,441 ; low w	1,439	$1,188.5$ $1,119.3$	Opasatika river, high water, 727; water, 719; rail	739
71.3	Tamen station........	1,448	1,123.4	Montcalm creck, rail	744
\%11.9	Hanase like, high water, 1, 1 , 34, low wat	1,433	1,126.7	Sunmmit..........	781
874.6	Deead Fax creek, bigh water, 1,394; Iow wa	1,416	$1,126.9$	Lowther station	836 878
74.7	Dead Fox lake, high water, 1,394 ; low water.	1,402	$1,134.0$ $1,134.4$	Crow creek, high water, 790; low water, 784; rail	798
373.1	Mud-hole lake, high water, 1,382 ; low water	1,381	1,134.4		771
778.8	Lancker fiver, hest wation.ater, 1,367; low water, 1,361; bed, 1,355; rail.	1,377	!,134.5	Railbow creek, high water, 760 ; low water, 755 ; rail.	${ }_{769}$
\%82.1	Grenwa like, high water, 1,42i; low wat	1,421	1,136-5	Two-mile creek, high water, 754; low water, 753; rail.	764
\%82.3	Summit.	1,437	$1,137.5$ $1,138.5$	Five-mile creck, high water, 720; low water, 716 ; rail.	752
$880 \cdot 3$	Manasguish river, high water, 1,353 ; low water, 1,351; rail Deadman creek, high water, 1,353 ; low water, 1350 ; rail	1,410	$1,138.8$ 1,13		750
757.8	Dix station.	1, 1,383	1,140.2	Armstrong creek, high water, 736; low water, 734; rail.	762
791.2	Durant hake, high water, 1,327; low water	1,324	1,141.4	Emra station	778
- 795.2	Atik creck, high watcr, 1,296; low water, 1,293; bed, 1,290 ; rail..	1,315	$1,143 \cdot 1$ 1,144 1	Evelyn creek, high water, 777; low water, 774; Rye creek, high water 796;	786
998.8	Buckre take, high water, i, 27% \%	1,314	1,148.2	Rye creek, 1.1 lgh water, 796 ; low water, 792;	812
$500-5$	Nark bake, high water, 1,277 ; low water.	1,272	1,154.5	Mcilwarth creek, high water, 770; low water, 766 ;	784
$800 \cdot 5$	Atik creek, high water, 1,277 ; low water, 1,272 ; bed, 1,267 ; rail.	1,293	1,155.0	Nelles creek, high water, 770; low water, 768; rail	786
802.3	Forsythe station.........................	1,299	1, 157.8	Mattawishkwia river, high water, 767; low water, 763;	786
803.4	Lake, water.......... Atik	1,232	1,163.5	Summit. Junction with Algoma Central and Hudson Bay railway	807
808.3	Avere lake, high water, 1,205 ; low water, 1.243 ; be.	1,274	${ }_{1} 1,163.6$	Ryland station.	836
808.8	Doucet station.	1,202	1,170.1	Holland station	815
812.6	Cañon creek, high water, 1,136; 10w water, 1,$124 ;$ bed, 1,$120 ;$ rail.	1,208	${ }_{1}^{1,172.0}$	Valentine creek, high water, 776; low water, 772;	805
815.0 815.8	Socko creek, high water, 1,133 ; low water, 1,126; bed, 1,123; rail.	1,180	1,178.2		793
815.8 816.3	Summit.		${ }^{1,178.2}$	Kabinakagami river, high water, 784; low water, 74;	
820.8	Press station.	1,202	1,180.0	Tike creek, high water, 783 ; low water, 782 ; rail.	95
	Migiskann river, high water, 1,101 ; low water, 1,089; bed, 1,075 ; rail.		1,180.7	Patterson creek, bed, 785 ; rail	795
821.8	Signai station.	1,172	1,180.9	St. Joseph river, high water, 786; low water, 784;	794
828.8	et station.	1,138	$1,182.6$ $1,183.2$	Leonard lake, water, 803; rail	828
835.3	Migiskan station -...................	1,102		Wammitit station	846
	Migiskan river, high water, 1,069; bed, 1,060; rail	1,102	1,188.7	Wapiti station.	
841.6 843.8	Adelphus creek, high water, 1,01; low water, 995; bed, 994; rail..	1,046	${ }_{1}^{1,190.4}$	Grady creek, high water, 52 ; rail	5
${ }_{843.8}$	Shabogama lake, high water 1000 \% low witer, 9 , 979 ; rail	1,026	$1,192.7$	Bertrann stataion. water, 741 ;	754
844.3	Nottaway station.....ter, 1,00 ; low water.	990	1,193.4	Diamond lake, high water, 74	40
\$48.1	Poplar tiver, high water, 1,$001 ; 1$ low water, $995 ;$ bed, 90. rail	1,030	1,196-2	White river, high water, 683; low water, 679; rail	718
849.8	Coffee river, high water, 1,008 ; low water, 1,$003 ;$ bed, 1,$001 ;$ rail.	${ }_{1}^{1,007}$	1,196.8	Skunk river, high water, 637; low water, 634; rail.	715
849.9	Tooker lake, high water, 1,008 ; low water,....................	1,003	li, 1 1,97.9	Nagazami river, high water, 658; low water, 653;	723
849.9 855.9	Arrmstrong lake, high water, 1,008; low water	1,003	$1,200.4$	Amee , igh wa	704
857.1	Cedar creek, high water, 1,035; low water, 1,029; bed, 1,$025 ;$ rail.	1,057	${ }_{1}^{1,201.4}$	Ames station	772
86.7		1,062	1,206.8	Pitopiko river, high water, 708; low water, 703;	748
865.7	, Natagan station.......................................	1,078	1,207.7	Nagagami station.	749
871.6	Fisher statio	1,124	$1,214.9$	Otasawian river, high water, 658; low water,	689
878.9		1,128			
878.9 880.3	Peter Brown creek, high water, 1,005; low water, $996 ;$ bed, 991 ; rail Larry station	1,024	$1,221 \cdot 4$	Savoff station.............................	677
887.1	Harricanaw station.	1,051	1,228.1	Teitaka station.	625
887.7 891.8	Harricanaw river, high water, 972 ; low water, 966 ; bed, $942 ;$ rail.	1,000	1,233.6	Clarke creek, high water, 608; low water, 606; ra Pagwachuan river, high water, 506 ; low water, 498	${ }_{5}^{622}$
893.3	Spirit lake, high water, 1,042 ; water, 10.036	1,051	1,235.9	Pagwa station..	${ }_{617}$
894.3	Summit................................	1,074	1,242.0	Wilgar station	681
896.8 $900-3$	Molesworth lake, high water, 1,005; low wate	1,002	1,242.6	Dog river, high water, 665: low water, 664; rail	682
904.8	Nawapitation...	1,048	$1,250 \cdot 5$		711
907.3	Summit................................ 68 ; bed, 967; rail	1,012	$1,251 \cdot 3$	Flint river, high water, 704; low	719
907.8	Kino station	${ }_{1}^{1,076}$	1,256.2	Ogaming station.	799
912.9 914.9	Deer river, high water, 1,006; low water, 1,002 ; rai	1,016	$1,258.8$ 1,259		820
915.8	O'Brien station..........1, ${ }^{\text {Roterta }}$; water, 1,001 ; rail.	1,014	$1,261.8$	Ona halla station............................	814 852
918.4		${ }_{1}^{1,020}$	$1,267.6$	Watini station..	893
919.9 920.5	Suderland creek, high water, 1,047; low water, 1,045; rail	1,060	1,273.6	Jobrin station.	972
922.5	Summit...	1,062	1,274.8	Rabbit tiver, high water, 931; low water, 930; rail.	953
924.5	Authier station.....g. water, 994; low water, 990; bed, 980; rail.	1,021	1,282.2	Mungal river, high water, 971; low water, 970; rail	979
931.3	Molesworth river, high water, 920 : low water, 917 ,	1,007	1,283.2	Grant station.	987
931.3 934.3	Makamik lake, high water, 920; low water...	917	$1,285.8$ $1,289.2$	Beaver creek, high water, 976; low water, 974; rail.	992
935.5		951		Summit.	1,077
936.7	South river, high water, 906 ; low water, 901 , rail	${ }_{924}^{944}$	1,291.0	Openisha station.............	1,046
939.9	South river, high water, 880; low water, 876; rail	${ }_{914}$	${ }_{1}^{1,295.1}$	Twin river, high water, 978 ; low water, 977 ; ra	994
940.8	South river, high water, 875; low water, 870; rail.	899	1,295•3	Twin lakes, mean water.	977
942.3 942.9		883	$1,298.1$ 1,2985	East McDonald creek, high water, 1,$005 ; 10 \mathrm{w}$ water, $1,00 \pm$; rail.	1,013
944.2	Moberly creek, high water, 8812 ; low water, 867 ; rail.	885	$1,299.5$	Wast McDonald creek, in	1,021
949.1	i ule station...................... 1.1 . 1	891	$1,30 \pm .3$		1,037
956.3	Okiko station	910	${ }_{1}^{1,305.4}$	Exton station.	1,036
956.7	Interprovincial boundary, between Quebec and Ontari	910	$1,301.8$ $1,311.7$	Mckay lake, mean water	1,040
961.1	Summit.....ar, high water, 873 ; low water, 871: rail.	905	1,313-7	Kawaska	1,085
964.7	Goodxin station	989	1,316.4	Titania station.........	1,060
968.6	Balkam station.	934	${ }_{1}^{1,317 \cdot 7}$	Kawaskagama river, high water, 1,052; low	1,066
9896	Mack station.	${ }_{883}$	$1,318 \cdot 7$ $1,323.7$	Trout creek, high water, 1,053; 1ow water, 1,051; rail..	1,062
${ }_{988.1}$	Low-bush station	889	$1,324 \cdot 9$	Johnson creek, high water, 1,032; low water, 1,028; rail	1,041
991.6	Kirke station........................	${ }_{942}^{886}$	1, 331.4	Paska station	1 1,043
1, 9998.0 1	Bungle station.	${ }_{971}$	$1,332-4$ $1,334.8$	Red Paint lake, water, 1,041, high water, 1,043:	1,045
1,013.4	Hughes station	989	$1,338.9$	Wilgar creeke weast, high water, 1,038 ; low water, 10.036 ; rail.	1,053 1,201
${ }_{1}^{1,020 \cdot 1}$	Abitibi river, ligh water, \%i6; Iow water, $\mathbf{6 6 4}$; rail...............	${ }_{857}$	1,340.2	Kapita station.	1,123
1,20.8	Abitibi station	895	$1,341-5$	Summit, height-of-land between St. Lawrence and Hudson bay. Gzowski lake, water.	1,123 1,080

Miles from Moncton	NATIONAL TRANSCONTINENTAL RAILWAY	Elevation above mean sea level	$\underset{\text { Miles from }}{\substack{\text { Monctor }}}$	NATIONAL TRANSCONTINENTAL RAILWAY	Elevation above mean sea level
1,342.1	Gzowski creek, high water, 1,079; rail.	1,103	1,545.8	Superior, junction with Thunder Bay branch.	1,209
1,346.1	Emilie creek, high water, 1,051 ; low water, 1,047 ; rail	1,064	1,546.5	Sturgeon river, high water, 1,177; low water, 1,171; rail.	1,202
1,346.4	Tashota station.	1,065	1,548.0	Abram lake, high water, 1,177; low water.	1,171
1,348-3	Robinson creek, high water, 1,033 ; low water, 1,031 ; rail	1,040	1,552-1	Graham station.....................	1,197
1,349.6	Spruce creek, high water, 1,038; low water, 1,033; rail...	1,051	1,553.4	English river, high water, 1,177; low water, 1,171; rail.	1,187
1,350.1	Robinson lake, mean water.	1,031	1,555.0	Pelican lake, high water.............................	1,178
1,351-1	Spruce lake, mean water..	1,034	1,558.4	Pelican station......	1,211
1,352.0	Penoquani station.......	1,053	1,564.8	Hudson station.	1,173
1,353.8	Doc lake, mean water.........	1,028	1,565.0	Lost lake, water.	1,157
1,357-3	Ombabika river, high water, 1,019 ; low water, 1,017; rail	1,033	1,572-8	Webster station,	1,252
1,357.7.	Ombabika station........	1,035	$1,579.9$ $1,584.3$	Taggart station..	1,309
$1,359 \cdot 0$ $1,360 \cdot 8$	Sapasoose lake, mean water... Mink lake, mean water, 1,046	1,035	1,584.3	Sunstrum station Edith creek, high	1,311 1,296
1,363.1	Grass lake, mean water,	1,013	1,591.6	Edith creek, hion	1,296
1,363.1	Grass creek, high water, 1,011 ; low water, 1,010	1,055	1,597-9	Richan station..	1,302
1,365.0	Minataree station (summit)..............	1,093	1,603.5	Freda station..	1,300
1,367-1	Mountain lake, mean water	1,059	1,610.3	Hunter station.	1,346
1,367.9	Mountain creek, high water, 1,024; low water, 1,023; rail	1,052	1,612.0	Summit, rail.	1,387
1,371.5	Camp creek, high water, 956; low water, 951; rail.	1,014	1,618.2	Morgan station.	1,289
1,374.3	Weatherbe station.	1,010	1,626-2.	Wabigoon xiver, high water, 1,109 ; low water, 1,105; r	1,155
1,374.4	Marten creek, high water, 977 ; low water, 975 ; rail.	1,009	11,627.4	Quibell station.......................................	1,147
$1,375 \cdot 5$	Roaring creek, high water, 972 ; low water, 969 ; rail.	1,009	1,636.0	McIntosh station	1,247
1,380.2	Jackfish river, high water, 867; low water, 860; , rit	953	1,643.0	Cañon station.	1,239
$1,383 \cdot 2$ $1,383 \cdot 2$	Seymour creek, Ferland sigh water, 910 ; low water, 906 ;-7rail	953	1,651.3	Cañon lake, high water, 1,232; low water	1,220
1, $1,384 \cdot 7$	Ferland station. Summit	969 975	$1,651.9$ $1,658.9$	Favel station..	1,232
1,388.9	Pikitigushi river, high water, 863 ; low water, 8584 ; rail	905	1,666.2	Fanes station...	1,290
1,389.6	Willet station............................	921	$1,671.0$	Brinka station.	1,133
1,393-6	Lake Nipigon, high water, 852 ; low water	850	1,674.8	Basket lake, wate	1,059
1,395.6	Green station...........................	975	1,675.8	Redditt station.	1,083
1,398.3	Rapid creek, high water, 963 ; low water, 960 ;	971	$1,681.7$	Macfarlane river. water, 1,062; rail	1,074
1,403.2	Wagaming station.........................	1,028	1,681.9	Ena lake, water.	1,062
1,405-0	Jojo lake, high water, 1,001 ; low water.	1,998	$1,682.2$	Ena station....	1,090
1,405.3	White-sand river, high water, 1,001 ; low water, 998 ;	1,021	1,689.6	Winnipeg river, high water, 1,040 ; low water, 1,033; rail	1,069
$1,409 \cdot 2$ $1,410.8$	Lake of the Flats, water.............................	1,098	$1,690 \cdot 0$ $1,690 \cdot 2$	Gun lake, low water, 1,033 ; high water. ${ }^{\text {a }}$. Minaki sation.................	1,040
$1,10 \cdot 8$ $1,411 \cdot 2$	Red Granite creek, high water, 1,094; low water, 1,093; rail	1,102	$1,690 \cdot 2$ $1,696 \cdot 3$	Winaki station.	1,067 1,194
1,413.2	Armstrong station.......................	1,121	1,702.6	Cygnet lake, water	1,078
1,413.3	Armstrong creek, high water, 1,102 ; low water, 1,101 ;	1,129	1,702.9	Otter lake, water..	1,078
1,420.9	Onaping station....................................	1,252	1,705.9	Malachi station.	1,102
1,424.8	Bear lake, water.	1,201	$1,105.9$	Malachi lake, water	1,081
1,425.3	Burnt creek, high water, 1,191; low water, 1,189; r	1,244	1,711.8	White station..	1,136
1,425.6	Tunnel lake.................	1,200	1,715.9	Summit	1,161
$1,427 \cdot 2$ $1,427 \cdot 8$	Pascopee station....................................	1,259	1, 719.8 $1,721.4$ 1,1	Ophir station...	1,157 1,042
$1,431.0$	Cañon lake, water.	1,262	$1,521 \cdot 4$ $1,527 \cdot 6$	Cross lake, wate	1,042 1,109
1, $434 \cdot 4$	Collins station.....	1,256	1,734.5	Brereton station.	1,048
1,441.7	Ogoki station.....................	1,283	1,736.8	Canadian Pacific Ry., main line, crossing, C. P. Ry., rail 1,0	
1,443.6	Lookout river, high water, 1,283; low water, 1,282; rail	1,289		\| N.T.Ry., rail ...	1,062.7
1,452.2	Jacobs station.......................................	1,337	1,739-8	Hoctor station.	1,011
1,459.4	Karra station..	1,359	1,748.8	Hhitemouth river, high water, 922; low water, 919; rail	938
1,465.5	Cameo station	1,375	1,749.7	Elma station..	940
1,469.0	Allan river, high water, 1,343; low water, 1,340 ; rail.	1,353	1,756-8	Lewis station.	949
1,469.1	Allanwater station......................	1,351	1,763.9	East Brokenhead river, high water, 905; low water, 901; rail.	912
1,478.8	Harvey station..	1,369.	1,764-3	Hazel station.	902
1,432.9	Staunton station.	1,389	1,770.5	West Brokenhead river, high water, 872; low water, 868; rail	878
1,491.8	Bucke station.	1,424.	1,774.2	Vivian station.	902
1,503-8	Fowler station.	1,373	1,782-2	Anola station.	843
1,513.5	Ycliff station.	1,320	1,790-7	Dugald station.	799
$1,517 \cdot 6$ $1,521 \cdot 0$	Sturgeon river, high water, 1,196; low water, 1,194;	1,220 1,215	$\begin{aligned} & 1,798 \cdot 7 \\ & 1 \end{aligned}$		766
$1,531 \cdot 0$ $1,529 \cdot 2$	Robinson station.	1,215 1,227	$1,801 \cdot 7$ $1,802 \cdot 7$	Seine river, high water, 753 ; low water, 732 ; rail.	784 773
1,536.4	Rosnel station.	1,201	1, $1,04.7$	Wianipeg, Fort Garry station.	775

The 1912 Grand Trunk Pacific system map showing lines under construction and proposed routes. It is suprising to note that under CNR, NAR and BCR auspices, most of these proposals, with the exception of central Quebec and the Yukon, have or are being constructed following very similar routes. (CNR)

${ }^{\ominus}$ U.C.R.S. 1979

